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SIGNIFICANCE AND EXPLANATION
The reliability, say R, of a system is often of interest, where
R = P(Y < X). Here, the random variables X and Y are assumed to be
independent, with X the strength of a component of interest subjected to a
stress Y. Our results are for the case where X and Y are normally
distributed with unknown means and unknown variances. (This of course means
that after transformation to logs, that our results apply for the case where

X and Y are distributed as log normal). For the case of point estimation

of R, we obtain a new estimator based on the predictive distribution of

Y - X. This is compared, via a simulation study, with 2 estimators mentioned
in the literature without too much analysis, namely the "nearly" maximum
likelihood estimate and the Rao-Blackwell UMVUE. The simulation study
supplies evidence for the conventional wisdom that the use of the “"nearly"
maximum likelihood esimtate is well advised.

In addition, we obtain for the first time two approximate methods for

constructing confidence intervals for R, as well as an approximate Bayesian
probability interval. The actual coverage probabilities of these intervals is

examined by simulation.
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STATISTICAL INFERENCE FOR RELIABILITY FROM STRESS
STRENGTH RELATIONSHIPS: THE NORMAL CASE

Benjamin Reiser* and Irwin Guttman
1. INTRODUCTION.
Let X and Y be independent normal random variables with means and
variances ux,oi and uy,az respectively. Interest is focused on

statistical inference for the parameter

R=pP(Y <X) =¢ X _ Yy

vhere ¢ 1is the standard normal cumulative distribution function. If X is
intexrpreted as the strength of a component subjected to a stress Y, the
resulting reliability is given by R. Thisg type of situation is of particular
interest in probabilistic mechanical design (for example, see Haugen

(1980)). We further assume that, random samples of size n and m, say

X = (Xqpeee,X,)' and Y = (Y1,...,Yﬁ)' are available on X and Y. 1In
this situation point and interval estimation procedures are discussed.

Related problems have been widely presented in the literature. Birnbaum
.(1956), Birnbaum and McCarty (1958) and Owen et al. (1964) present non-
parametric confidence limits for this problem. 1In addition Owen et al. (1964)
discuss the normal case for m = n and o ay and for paired cbservations
on the jointly normal variates X and Y. Enis and Geisser (1971) look at
various situations from a Bayesian viewpoint giving predictive estimates and

posterior Bayesian limits but 3o not discuss the case where “x is not

*Department of Statistics, University of Toronto, Toronto, Ontario M5S 1Al

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and
by NSERC (Canada), under Grant No. 8743.




necessarily equal to oy' Procedures if the parameters uy, oy are known are
given in Church and Harris (1970) and Mazumdar (1970).
For the particular problem we have defined, Lloyd (1980) and Haugen

(1980) use the (almost) maximum likelihood estimate

R =0 X - Y

o\

n - m 2 n 2
where X = ) xi/n, Y= ) Yi/m, (n-1)s = ) (x, - X)°, and i
i=1 i=1 i=1 r
2 _ 1 <2
(m = 1S = ) (¥, - ¥)° while Downton (1973) derives the uniformly minimum
i=1

variance unbiased estimator (UMVUE) of R, which we will denote by Rz. (For

(1.1)

~

completeness, we state the formula for Rz in Appendix AI.) Lloyd obtains,

by the usual propagation of errors method, an estimate of the variance of

R1, which with the assumption that R1

approximate confidence limits. Since 0 < Ry < 1 with Ry usually close to

is normally distributed, then gives

one this procedure can give misleading limits. Haugen (1980) obtains i

confidence limits of u - uy based on the standard approximate ¢t solution

to the Behrens-Fisher problem. The limits for u, - uy are simply divided by
si + si and in turn ¢ of these values are calculated providing limits

on R. The properties of this procedure are not well understood due to the

division by a = v si + s;, without accounting for the variation of a.

Kececioglu and Lamarre (1978) attempt to generalize the standard procedure for b

deriving confidence limits for the tail probability of one normal distribution

to this case. Unfortunately their derivation involves a fundamental error

which will be discussed in more detail below.
In Section 2 of this paper, we derive a point estimator of R using a

Bayesian predictive approach, whose characteristics are compared with those of

R1 and R2 in Section 3, by means of a simulation study. In Section 4, we

-2-




derive confidence limits on R, first from the frequentist approach involving

a non-central t distribution, obtained by approximating the distribution of

a weighted sum of independent Chi-sguares by the distribution of a scaled ’
xz- variable by equating the first two moments. A well known approximation

to the non-central t is then utilized to drive a different confidence

interval. Finally, we use a Bayesian approach to derive a (posterior)

confidence interval for R. These confidence intervals are compared in

Section 4.4 by means of a further simulation study. i

g~

2. PREDICTIVE APPROACH

There is another approach which will generate a point estimate of the
reliability functions, namely the Bayesian approach through the relevant
predictive distribution. So suppose in general, that the random variable
w, whose distribution is £(w]|8), with 8 a (t x 1) vector of parameters,
is to be observed independently of the data at hand, say WepeeooW, where
the w; are independently and identically distributed observations on w.
Then the predictive distribution of w, say h, given the data

Y = (w1,...wn)', is defined as

hiw|w) = | n(w|8)p(8|was , (2.1)
)

L 4

where p(g[!) is the posterior distribution of 3, given w, that is, 3

n
p8lw = x[ 1 £lw |0)]p(8) , (2.1a)
i=1

with p(8) the prior of 0.




-y s g

Now we are interested in the reliability R, where

2 2
= 02
R = P(Y < xl“y’"x'°x'°y) (2.2)

and suppose we have available the data x = (x1,...,xn)' and y= y1,...,vm)',
which are, respectively n and m independent observations on X, the
strength variable, and Y, the stress vairable. If subsequent to the taking
of x and y, we will observe, independently, X and Y, where X has the
same common distribution of the x; and y has the same common distribution
of the yj, then, as is well known, if Xy~ N(ux,oi), yj ~ N(uy,o;), the
application of (2.1) when the prior distribution chosen is the Jeffrey's

diffuse prior

1

P(u_,u_,02,02) « (02 ;)- (2.3)

o
x""y""'x'y x

leads to independent predictive distributions h, and hy for X and Y

which are such that

- l 2
x~x+7/ (1+ n)sx t

=1 (2.3a)
and
- / 1, 2
~ + + - .
Y~y (1 m)sy t 4 ({2.3b)
where tn-1' ty-q Aare independent random variables with student t-

distributiongs of n - 1, m - 1 degrees of freedom respectively. We note
that in this particular case, the above predictive distributions also have a
confidence interpretation.

We now consider the predictive estimate of R defined in (2.2), namely

A

Ry = P(Y < X[x,y) (2.4)

From (2.3) above, we have that (2.4) may be written as

s T e SR R




R /——1——2 /—-—7—2 - -
R, = p(v (1 + ')sy to " (1 + -—)sx t g <x- vix,y) (2.5) {

n
= p((cos 68)t - (8in 8)t « 22X ;
=1 S SRS 1, 2 j
(1+=)s" + (1 +-)s
m’"y n’"x i
= p(BFT(m - 1,n - 1) ¢ =X ) ‘

1, 2 1, 2

|f(1+—)s +(1+)s

n'y n’ x
where BFT is the Behrens-Fisher t variable, degrees of freedom
(m ~ 1,n - 1), and 6 given by L

1.2
_ (1 +=)s
0 = tan '\ nx (2.5a)

Tl 3
For a given set of data, tables of the Behrens~Fisher ¢t are available
for various values of the pairs of degrees of freedom, and ‘angle' 6. These
prove to be not very helpful in practice - only percentage points are
available, and this coupled with the fact that the calculated value of 8
(with probability one) is never a value used in the table, requires reverse
double extrapolation, etc. There is, however, an approximation due to Patil
(1965), who sets
BFT(m - 1,n ~ 1) = tg/h (2.6)

where tf is a Student-t variable with f degrees of freedom, with

[R=7F cos’® + 2= sin]?
£ =4+ 3 3 (2.6a)
[ (m ; L cos49 + (n -21) sin49]
(m - 3) (m - 5) (n=-3)(n~-275)
and
2 f m -1 2 n -1 2,11
W = o= [—3 cos®® + ~— sin“6) (2.6b)
«Be




This approximation seems to work well for (n,m) as small as 8, and in our

-

simulations below we use (2.6) above in evaluating R3 of (2.5). The

behaviour of the Ri's is now discussed in the following sections.

3. SIMULATION STUDY OF THE BEHAVIOUR OF THE Rie

For various sample sizes (n,m), we generated random samples on X
and Y for the case where R defined in (2.2) takes on the values .99, .90
and .67. For each of the chosen (n,m), we iterated 5,000 times, and from

the results computed the bias and the root mean square error (RMSE), for the

Ri's. The results are given in Table 1.

~

The simulation results confirm that the UMVUE estimator R2 is indeed

unbiased. In terms of bias, the predictive estimator R is, in all our

3
or R2. The bias of R

-~

calculations, worse than either R seems not large

1 1

(discrepancies are in the third place).

Referring to RMSE, none of the R

5 turn out to be best uniformly. The

predictive is best only for the case R = .67, and is otherwise the worst. We

note that for R = .67, that R1 is second best with R2 trailing the other

two, but that differences are small.

-~

For the cases R = .99 or .90, R3 in terms of RMSE, is always ranked

last, with R1 and R2 alternating as the best, but again with only small

or R with R could be

differences. However, the difference of R 2 3

1

substantial. For example, for R = .99, (n,m) = (10,10), the RMSE of R1

and Rz are .0173 and .0146 respectively, while the RMSE of R3 is .0266.

We note that as the sample sizes (n,m) increase, the behaviour of the

-

Ri tend to be similar, and this is repeated as R tends to .5. As a

Amma Al s e A - h
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R1 R R
R n m BIAS RMSE BIAS RMSE BIAS RMSE
10 10 -.0047 0173 .0000 .0146 -.0161 .0266
10 15 -.0038 .0148 .0001 .0126 -.0129 0221
10 20 -.0037 .0144 -.0040 .0121 -.0119 .0209
15 10 -.0038 0148 .0001 .0126 -.0129 0221
.99 15 15 -.0031 0131 -.0001 .0114 -.0100 .0183
15 20 -.0028 .0120 -.0041 .0104 -.0086 .0164
20 10 -.0033 .0140 .0003 0121 -.0115 .0204
20 15 -~.0028 .0120 .0000 .0104 -.0087 0164
20 20 -.0023 .0107 -.0037 0091 -.0071 .0141
10 10 -.0053 .0662 .0019 .0673 -.0240 .0700
10 15 -.0052 .0605 .0007 .0613 -.0207 .0636
10 20 ~.0055 0572 -.0009 .0576 -.0195 .0601
15 10 ~-.0052 .0605 .0007 .0613 -.0207 .0636
<90 15 15 ~.0036 .0533 0011 .0539 ~.0161 0556
15 20 ~.0049 .0505 -.0025 .0510 -.0159 .0527
20 10 -.0040 .0565 .0018 .0567 -.0180 .0590
20 15 -.0052 .0513 .0002 0511 -.0162 0535
20 20 -.0037 0471 ~.0009 .0476 ~.0131 .0488
10 10 -.0039 . 1161 -.,0016 . 1181 -.0135 .1105
10 15 -.0015 <1071 .0003 .1085 -.0096 .1025
10 20 -.0013 « 1007 0000 .1018 -.008S .0969
15 10 -.0015 «1071 .0003 . 1085 -.0096 .1026
.67 15 15 -.0011 .0946 .0003 «0957 -.0078 .0914
15 20 -.0006 .0879 -.0014 .0882 -.0064 .0853
20 10 -.0028 .1026 -.0003 <1044 -.0099 .0989
20 15 .0006 .0879 .0033 .0903 -.0053 .0852
20 20 -.0023 .0833 -.0034 .0855 -.0073 .0812
1 Table 1. Comparisons of the ;i based on 5,000 iterations.
| ;1, see (1.2); ;2. see (AI.3); ;3, see (2.5)
-7-
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consequence of this and the results above, and because of the simplicity in
computing ;1, we favour its use as a point estimator.

We also note that for small samples, the RMSE is quite large, so that
point estimates here are not very satisfactory. It is for this reason that we

now consider the question of interval estimation.

4. CONFIDENCE LIMITS ON R.

4.1 The Frequentist Approach

Usually a lower bound on the reliability is of interest and we will
restrict ourselves to this case. Since ¢ 1is a monotonically increasing
function of § = (ux - uy) / Oi + 0; finding a lower confidence bound for
R is equivalent to finding one for &. Our problem has essentially the same
structure as the Behrens-Fisher problem and the solution presented below is

similar in spirit to the standard approximate "t" solution to the Behrens-

Fisher problem.
02 62
s .3 x
Note that X - Y ~ "("x ol Wi + ;1),
and
2,2 2
(n = 1)sx/°x Xp-1
2
(m = 1)3 R I
02 + 02
with all three of the above being pairwise independent. Let N = -——-1’2‘ 2°
c" + 0
Then X X
n m
~n( - 1) or N(/N §,1) . (4.1)
-8~




In the equal sample size case, N = n = m. In addition

2 2
o o

2 2 _ X 2 y 2
sx * sy n -~ xn--1 * m - 1 Xm=1

or approximately

02 + o2 2
Q'L?—'le (4.2)

(The notation a stands for "approximately distributed as") where
4 4

g + o

- 2 242 x y

£ (cx + cy)///; = o5

and si + si is distributed independently of (4.1). Defining § =

X - ¥
/ Si + Si
we obtain from (4.1) and (4.2) that
/& a t, (/N &) (4.3)
where tf(fi §) denotes a non-central t distributed variate with f
degrees of freedom and non-centrality parameter /NS§. If n=m and it is
known that ax = cy, (4.3) holds exactly and leads to the well known sampling
theory solution (see Owen et al. (1964), Enis and Geisser (1971)). By using
si and s; in the formula for N and £ the estimates ; and ; are
obtained giving the further approximation
Sui2 t;(/‘; 8) (4.4)
For equal sample sizes N = n = m does not require estimation. Since the
non-central ¢t distribution has the monotone likelihood ratio property an
approximate 1 - a level lower confidence bound for § can be obtained by
solving
Prob(t;(/r: 8) < G S) = 1 -a (4.5)

numerically for 8 (Lehmann (1958)). Denoting this solution by § the

"’
1 ~a level approximate lower confidence bound for R is then simply




R,, = 9(8_.). Kececiogle and Lamarre (1978) take a similar approach but make

12 12
the mistaken assumption that N = f + 1,

A simplification is possible by using the well known approximation

2 1/2
- t(y) a
(t (v) (1 + 5) N(O,1) .
Applying this to (4.3) gives
Y - ‘Az 1/2
/; (¢ - 8)1/(1 + -'ﬂj—) 2 neo,n . (4.6)
2f

Thus a (1 - a) level approximate lower confidence bound 622 can be

obtained as

- (1 82)1/2
§,, =8 - (v~ +——= z p (4.7)
22 N 2f 1-a
where 2 is the 1 ~ a standard normal percentile point. The

1-a

corresponding bound on R is then R, 6 = 0(621). This result can

28
alternatively be obtained by considering S asymptotically to be normally
distributed with mean & and variance estimated by the usual propagation of
errors method. Details are omitted for the sake of brevity. It seems more
reasonable to base inference on a normal approximation to 3 than on the
normal approximation to ; as suggested by Lloyd (1980) since 3 is
unbounded.

Church and Harris (1970) point out that in certain cases it is possible

to assume that the parameters of the stress distribution are effectively

known. This is equivalent to taking m + ®, It can readily be verified that

Lim 62l gives the solution presented by Church and Harris.
mre




4.2 The Bayesian Approach
The Bayesian approach also leads to bounds on the relizhility. Given the

data, and assuming that the usual vague priors are appropriate, vig

p(u_,u ;62

x 'Yy x.5§) = 1/0i5; P) (4.8)

then the joint posterior of B o ,ai,&i can be obtained. Using the joint

Y
posterior, we can in principle proceed to £ind the marginal posterior of

v, o=
R — (4.9)

/ 2 2

o + 8§
x Yy

and thus of R = §(S§). To do this requires a triple integration. A method of
doing this in closed from eludes us, but in principle we may do this
numerically. We would like to indicate a simpler solution, and we first note

that given oi, o;, that the posterior of Yy is such that

X
§ ~ N2 2, (4.10)

vhile the posterior of the variances are such that

2 2 2 2 2,62
ax ~ {(n - 1)sx/xn_1, independent of oy (m - 1)sy/xn-1 (4.11)

We see now that if n = m, the distributional variance of § 1is simply
1/n, and to f£ind the unconditional distribution of §, we need only
integrate (4.7) with respect to the distribution of a: + o;. where the

distribution of the variances o: and a; is given in (4.11) with m = n.

At this point we will approximate the distribution of




b

2 2 n n
o, * oy ~ 3 + 2
*n-1  2%n-1
(the 2 are independent), where a_ = (n - 1)s2 b = (n ~ 1)s2
1Xn_1 pe ’ n n xl n yl
letting
a
ax +0 2
Xp

so that by equating moments, we let

-1
a= (en + 2)cn

b=(e ' +4),
n

where
e, = (n - 5)7"an? + (1 - a2
a, = a /(a, + b))
cp= -1, +p) .

If we set

2
w= 0 +0
x

2
b 4

then w has the approximate distribution

b/2

b
a "(2 + 1)
2)."/ 21‘ (_g_)

f(wlg:x) = exp(-a/2w)

Combining (4.10) with (4.17) and integrating out w, we find that the

unconditional posterior of § 1is such that

G

+ 1)

- - =2 =
p(6|5,x) « | exp{- % [6 - _x/_:x] fw exp(-a/2w)dw
0 w

1/2

or, after setting u = w (|aw/au| = 2u™3)

(4.12)

by

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)




b-'exp[- %'{nIG - (x - ;)ulz + auz}]du (4.19)

L]
ptSlx,y) =X ] u
0

Inegrating both sides of (4.19) will respect to § yields (a proof is given

in Appendix II)

x = /n a2 /7 20"V 20y 10, (4.20)

To find a lower (1 - a) Bayesian bound for §, say 631 we need to ;

solve, for 631' the equation

1-~a=] p(slx,y)as (4.21)
S

vwhich after an interchange of the order of integration, may be written as

1-a = =25 J ub-1exp{.': HJ '5:_ exp - 3 (6 - (x-y)ul2aS}au  (4.22)
2—2}(2) 0 632 "
2
so that we have
b/2 ® 2 _
1-a= '2 | u”Texpf ': fot/nt(x - y)u - §,,)1au , (4.23)
—_ 0
22 1(})

and we see that it is necessary to solve (4.23) numerically for 63&' Once
found we have a lower Bayessian bound for R, viz
Ral - 0(63£) . (4.24)
Using (4.18)-(4.20), it can be shown that for large n,
o 1 [
B8lx,y) = 8, var(8|x,y) = (= + ), (4.25)

N 2f




and we note the similarity to the sampling theory results of (4.6). The

question of the asymptotic normality of &, given x, y, remains open.

4.3 An Example based on Data of Kececioglu and Lamarre
Kececioglu and Lamarre (1978) give data pertaining to a mechanical

component (their Example 3) that yields

L1

= 170,000 psi, Sy = 5,000 psi,
n=m= 32
y = 144,500 psi, sy = 8,900 psi,

For a 90% confidence lower bound, we have on the basis of the above data,

R, = .9822, R_, = .9818, R_, = .9926

22 32

These were of course calculated as indicated in Section 4.1 and 4.2. 1It is

12

interesting to note that Kececioglu and Lamarre obtain the bound of .980 for

this set of data, for 1 - a = .90.

4.4 Simulation Study of Ril
The first part of our simulation study compares the coverage properties
of the Ril." We used 2,500 iterations with n =m = 10, 15 and 20, with
R = ,99, and calcualted the “12 for 1 - a= .,90. We then counted the
number of times that R exceeded the calculated Rigs with the proportions
out of %500 tabulated in Table 2. This procedure was carried out for oi/oi
set equai to 1 and 3. We note that the non-Bayesian methods have coverage
very close to the nominal confidence level of .90, even for very small sample
sizes. We remark that we have examined these bounds for many cases and have
observed similar hehavior, that is, the bounds Ril and an obtained are
strikingly similar, so that, as expected, the corresponding estimated

confidence levels are quite close. This implies that R derived as an

22’

-14-

I —————r

B e

AU o e




approximation to R is a quite good approximation, and due to the ease of

1’

computation of R its use is thus recommended.

2e’

Table 2. Estimated Confidence levels for 1 - a = .9 (n = m)

with R = ,99, basged on 2,500 iterations.

2 2
95/% h=m Rt Ryt Rit
10 .908 .897 .956

1 15 .903 .894 .940
20 .912 .899 .939

10 .899 .888 .940

3 15 .899 .889 .928
20 .894 .889 921

The coverage of the Bayesian method is farther from the nominal than the
confidence methods but this improves with larger sample size corresponding to
the results mentioned at the end of Section 4.

The second part of our simulation study examines R1£ and Rzz for
unequal sample sizes and is presented in Table 3. Again we see that the
coverage is quite close to the nominal confidence level of .90 and that the
simple Rzz method performs satisfactorily. Since for equal sample sizes
just f needs to be estimated while in the unequal case both £ and N are
estimated we had expected our methods to perform not as well in the unequal

case as the equal case, Comparing Tables 1 and 3 we see that this is

incorrect and that in fact there is no deterioration for unequal sample sizes.
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Table 3. Estimated Confidence levels for 1 -a = .9

(n=m), R= ,99, based on 2,500 iterations

Oi/oi {n,m) 10,15 10,20 15,10 15,20 20,10 20,15
R1, .900 «.900 <900 .901 .901 .904

1 .
Rz2 .894 .892 .889 -891 .890 .899

i

R .907 911 .892 .901 .885 .892

3 12
Rzz .898 «901 .882 .891 .875 .884

5. DISCUSSION

The above computations of lower confidence bounds can easily be
extended to the case where strength and stress are sums of independent
normal variates, each of which can be sampled separately. In addition if X
and Y are lognormally distributed with X,Y > 0, and since P(Y < X) =
P(log Y < log X), all the results of this paper can be applied after taking
the log transformation of the observations.

In many situations X and Y are not observed directly but one or both
of them are computed as functions of random variables which can be observed
(see Haugen (1980) for example). Frequently these functions are
multiplicative in nature (Avakov (1983)) and the use of the lognormal is
reasonable. If these multiplicative factors can be assumed to be lognormally

distributed, then with the availability of sampling data confidence bounds can

be calculated in addition to the point estimates of Avakov.
Although the normal distribution is most commonly assumed for both

strenth and stress there are often theoretical or empirical justifications for

|
|




the use of other distributions. Distributions such as the lognormal,

exponential, Gamma, Weiball, extreme value, and Maxwellian have been suggested
(Haugen (1980), Dhillon (1980)). Note that the strength and stress
distributions may come from a different family. Although there has been some
discussion in the literature on point estimation in the non-normal case (see
for example Beg (1980) and the references cited there) very few results are
available on interval estimation. Basu (1981) gives some results in the Gamma
case and we have shown above how the lognormal situation can be handled.
Unfortunately, inference will be highly sensitive to parametric assumptions
and where only small sample sizes are available it will be very difficult to
decide which parametric form is appropriate. The nonparametric approach is
not very helpful here due to its extremely conservative nature (Basu

(1981)). There seems to be a need for some semi-nonparametric approach which
would not apply to all distributions but just to some set of "reasonable"

ones.
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APPENDIX Al

As mentioned in the Introduction section, we state in this Appendix, the

formula for Rz,

of R =DP(X <Y), as derived by Downton (1973), where X ~ N(ux,oi),

the uniformly minimum variance unbiased estimator (UMVUE)

2
Y ~ N(uy,ay), with X and Y independent. We are assuming that samples

XqoeeosX, of n independent observations on X and, independently,

Yqoeee:¥y, m independent observations on Y, are available. Using the

notation of our paper, Downton shows that Rz is given as follows: Define

1/2 -1/2

A = ~ X Y (A1.1)
S (n - 1)n +8S (m-1)m
x Y

and for |[v| € 1, 1let

0 if $(v) < -1, for all |v| <1
h(v) = (A1.2)

min(¢(v,1)
J (1 - )™V 25, e a(v) > -1

-1

for some v € (-1,1) ,

where
- = S (n~-1)
_ix - 9/m _lL______.J/GE
$tv) =g m-1 " 'sm-17n (AI.2a)
b4 Yy
Then,

( 1 if A> 1

- rtgrG5) 2%
R, = 1 ] nv)(1 - v) “av if |a} <9 (AI1.3)
”r(n ; 2)r(m ; 2) -1

L 0 if A< 1

(We note that on page 557 of Downton's aforementioned paper, the last two

lines have an error and should have "nz = 0" and “R2 = 1" interchanged).
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APPENDIX AIl
As advertised in Secticn 3, we wish to derive in this Appendix, the

result given in (4.20). We have from (4.19) that

1= | p(8]x,y)as = (AII.1)
-0p

«
= K J ub-1exp[- %‘{n[G - (x - ;)u]2 + auzldudw
0

J
e
where a > 0, and Db > 4. On interchanging the order of integration, we have

[} [ ]
1 =% ) uP Texp{- % au’l{ | exp - 208~ (x - yiu)2aslaw  (ar1.2)

0 -

The inner integral of (AII.2) is that of an unnormalized normal density, mean

l; - ;)u, variance 1/n, so that the inner integral has value Y2x/n.

Hence
V2n * b~

1=——x] u 1exp{~‘% auz}du (AII.3)
/n 0

If we let au2/2 = w in the integral, we easily find

b
(b-2)/2 » 2-1
/TR ] W e ™aw (AII.4)

/o ab/2 °

so that
X 2(b—1)/2 /v r(%)
= .4
1 /:Tab/z (AII.4a)
or
K = /n a2 //17 z(b"”/zr(-g) (AI1.5)
as stated.
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